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Global line network 
planning 

Setting Timetables 

Vehicle scheduling  

Crew scheduling 

Setting frequencies  

Setting departure times 
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TNDP bases design on Ceder & Wilson 4 phases 

  



RTNPD model integrates the two first phases 
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Rapid Transit Network 
Planning and Design Model 

(RTNPD) 
 

Global Line Network 
Planning Model 

Setting frequency Model  

Passenger Transit 
Assignment  Model 



Problem statement 

 Routing  features 
• Line topology is circular and symmetrical 

• Nodes can be considered as passing points or stops 

• Number of constructed stops and stretches limited by an infrastructure budget 
 

 Planning  features 
• Homogenous vehicles fleet characteristics (Capacity) 

• Number of services are considered as continuous variables 

• Line service limited by links capacity 

• Constant service time at service nodes 
 

 Passengers’ features 
• Follow a system optimum: User Global Time is to be minimized 

• Its demand is known in advance and is split into O-D pairs. 

• Passengers’ service times are considered as well as in-vehicle travel times 

 

 

Features in bold are breakthroughs considering the current state of the art  
regarding to Mathematical Programming Techniques. 
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Network Model 
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Objective function 

Minimize :                       Pax. costs         +        Operator Costs 
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Pax. costs    =                                   Travel Times                             +  Passengers’ service times at stations 

 

Op. costs 1   =              Construction Costs    +            Maintenance Costs 

 

Op. costs 2   =    Assign Trains +   New Trains  +      Services 
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A network extension allows the representation of 
passengers’ flows at stations 
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xay ttt  : Pax.  from V(in) cannot belong to V(y) and V(a) at the same time. 
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K(G) 

K(in) K(out) 
V(x)  

 
Pax. remaining in a train 

V(y) = Pax. Alightning 
      from a train 

V(a)= Pax. Boarding  
   to a train 

V(in)  
 
        Pax. in a train 
        arriving at station k 

       V(out)  
 

Pax. in a train leaving 
station k 

                U(in)  
 
Pax. in another transit 
vehicle arriving at station k 

              U(out)  
 

    Pax. another transit 
    vehicle leaving at station k 



Constraints 

Group of Constraints Constrained variable Dependency 

Passengers’ flow balance v(i,j,p,l), u(i,j,p),  
vx(i,j,p,l), vy(i,j,p,l), va(i,j,p,l) 

~y(i,l),  g(p). 

Infrastructure budget y(i), x(i,j) Cmax(net), C(y,i), C(i,j,x) 

Train’s  budget Δf(c) Cmax(v), C(f) 

Train’s  fleet b(l) f(c,e), f(c,n), Δf(c) 

Allocation of services to trains b(l), z(l), t(l) - 

Infrastructure-to-passengers  
flow linking 

v(i,j,p,l),  
vx(i,j,p,l), vy(i,j,p,l), va(i,j,p,l) 

x(i,j,l), y(i,l) 

Topological line design x(i,j), y(i), x(i,j,l), y(i,l), ~y(i,l) - 

Trains’ capacity v(i,j,p,l) q(l), z(l), z(i,j,l) 

Link capacity z(l), z(i,j,l) /h, q(i,j), x(i,j,l) 

Cycle length t(l), x(i,j,l), ~y(i,l) /h, PST 
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Model Solving techniques 

• Exact approach 

 Branch & Bound of CPLEX 12.4.0 (CPX B & B) 
 

• Heuristic approach 

  Incremental line construction procedure (ILCP) with, 
• Full demand assignation (ILCPFD) 

• Incremental demand assignation (ILCPID) 

10/26 Integrating network design and line planning in rapid transit systems   CASPT12 



An illustrative example of ILCPFD procedure 

Line Visited Nodes Cycle 

- - 

Constructed lines 

Stations Stretches Trains 

Available 1,2,3,4,5,6 (1,2), (1,3), (2,3), (2,4), 
(3,4), (3,5), (4,5), (4,6), 
(5,6) 

10 

Used - - - 

Resources 

Budget 

Infrastructure Trains 

Available 8000 $ 5000 $ 

Used 0 0 

L = 3 
Horizon = 300 min 
Cost (train)     = 500 $ 
Cap (train)      = 100 pax. 
Cap (stretch)  = 90 trains/ horizon 

Demand 

O D G(O,D) Line 

1 6 9000 - 

1 5 4500 - 

3 6 4500 - 
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Iteration 1. A line linking the highest OD demand is constructed 

Line Visited Nodes Cycle 

1 1, 2, 4 ,6 28 min 

Constructed lines 

Stations Stretches Trains 

Available 1,2,3,4,5,6 (1,2), (1,3), (2,3), (2,4), 
(3,4), (3,5), (4,5), (4,6), 
(5,6) 

10 

Used 1, 6 (1,2), (2,4), (4,6) 10 

Resources 

Budget 

Infrastructure Trains 

Available 8000 $ 5000 $ 

Used 2020 $ 0 

L = 3 
Horizon = 300 min 
Cost (train)     = 500 $ 
Cap (train)      = 100 pax. 
Cap (stretch)  = 90 trains/ horizon 

Demand 

O D G(O,D) Line 

1 6 9000 1 

1 5 4500 - 

3 6 4500 - 
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Iteration 1 to 2. Parameters’ Update   

Line Visited Nodes Cycle 

1 1, 2, 4 ,6 28 min 

Constructed lines 

Stations Stretches Trains 

Available 2,3,4,5 (1,3), (2,3), (3,5), (4,5),  
(5,6) 

0 

Used - - - 

Resources 

Budget 

Infrastructure Trains 

Available 5980 $ 5000 $ 

Used 0 0 

L = 3 
Horizon = 300 min 
Cost (train)     = 500 $ 
Cap (train)      = 100 pax. 
Cap (stretch)  = 90 trains/ horizon 

Demand 

O D G(O,D) Line 

1 6 9000 1 

1 5 4500 - 

3 6 4500 - 
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Iteration 2. Another line linking the lowest demand pairs is constructed     

Line Visited Nodes Cycle 

1 1, 2, 4 ,6 28 min 

2 1,3,5,6 30 min 

Constructed lines 

Stations Stretches Trains 

Available 2,3,4,5 (1,3), (2,3), (3,4), (3,5), 
(4,5),  (5,6) 

0 

Used 3,5 (1,3), (3,5), (5,6) 0 

Resources 

Budget 

Infrastructure Trains 

Available 5980 $ 5000 $ 

Used 1270 $ 4500 $ 

L = 3 
Horizon = 300 min 
Cost (train)     = 500 $ 
Cap (train)      = 100 pax. 
Cap (stretch)  = 90 trains / horizon 

Demand 

O D G(O,D) Line 

1 6 9000 1 

1 5 4500 2 

3 6 4500 2 
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Iteration 2 to 3. Parameters’ Update   

Line Visited Nodes Cycle 

1 1, 2, 4 ,6 28 min 

2 1,3,5,6 30 min 

Constructed lines 

Stations Stretches Trains 

Available 2, 4 (2,3),  (3,4), (4,5) 0 

Used - - - 

Resources 

Budget 

Infrastructure Trains 

Available 4710 $ 500 $ 

Used 0 0 

L = 3 
Horizon = 300 min 
Cost (train)     = 500 $ 
Cap (train)      = 100 pax. 
Cap (stretch)  = 90 trains / horizon 

Demand 

O D G(O,D) Line 

1 6 9000 1 

1 5 4500 2 

3 6 4500 2 
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Iteration 3. No more lines are constructed  

Line Visited Nodes Cycle 

1 1, 2, 4 ,6 28 min 

2 1,3,5,6 30 min 

Constructed lines 

Stations Stretches Trains 

Available 2, 4 (2,3),  (3,4), (4,5) 0 

Used - - 0 

Resources 

Budget 

Infrastructure Trains 

Available 4710 $ 500 $ 

Used 0 0 

L = 3 
Horizon = 300 min 
Cost (train)     = 500 $ 
Cap (train)      = 100 pax. 
Cap (stretch)  = 9 trains / horizon 

Demand 

O D G(O,D) Line 

1 6 9000 1 

1 5 4500 2 

3 6 4500 2 
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Computational Results 

• Two types of experiments carried out 

 Type 1. Model validation test 

 Type 2. Network Size vs. Performance Test 
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Networks for model validation test 
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N1 

N2 

N1 N2 

 

Nodes 

N(TP) 6 9 

N(C) 6 9 

 

Links 

A(TP) 30 26 

A(C) 30 72 

 

Demand 

|W| 30 72 

G(W) 5030 10290 

Table 1: Main features of the tested Networks. 
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General Results for Network N1 

Exp. |L| ŋ Method Obj. Obj. (Pax) T. CPU * Gap 

 

 

1 

 

 

2 

 

 

2.0 

ILCPID 7953.12 7518.92 7 0.14% 

ILCPFD 7953.12 7518.92 6 0.14% 

CPX B&B 7942.31 7481.71 7 - 

 

 

2 

 

 

3 

 

 

2.0 

ILCPID 8286.92 7777.52 12 41.6% 

ILCPFD 5924.13 5438.13 9 1.2% 

CPX B&B 5852.85 5353.45 80 - 

 

 

3 

 

 

4 

 

 

4.0 

ILCPID 21378.74 20864.54 10 6% 

ILCPFD 20698.43 20164.03 7 2.6% 

CPX B&B 20169.86 19650.06 106 - 

 

 

4 

 

 

5 

 

 

4.0 

ILCPID 23804.90 23265.00 14 34.9% 

ILCPFD 19361.66 18790.46 9 9.8% 

CPX B&B 17640.46 17079.26 618 - 

 

 

5 

 

 

6 

 

 

5.0 

ILCPID 33176.02 32624.02 12 38% 

ILCPFD 25625.18 25048.38 9 6.6% 

CPX B&B 24037.23 23449.23 3380 - 

(*) Time expressed in seconds 
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Average Gap  
 

  ILCPID = 24% 
  ILCPFD = 4% 



General Results for Network N2 
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Exp. |L| ŋ Method Obj. Obj. (Pax) T. CPU * Gap 

 

 

1 

 

 

2 

 

 

2.0 

ILCPID 24985.18 24522.78 16 < 0.01% 

ILCPFD 24997.66 24532.06 12 0.05% 

CPX B&B 24984.01 24521.61 36 - 

 

 

2 

 

 

3 

 

 

2.0 

ILCPID 21231.80 20757.00 16 7.96% 

ILCPFD 22038.79 21540.59 16 12.07% 

CPX B&B 19665.96 19170.96 191 - 

 

 

3 

 

 

4 

 

 

3.0 

ILCPID 44983.20 44481.40 18 17.82% 

ILCPFD 42065.18 41564.38 15 10.17% 

CPX B&B 38180.48 37681.08 271 - 

 

 

4 

 

 

5 

 

 

4.0 

ILCPID 68381.00 67877.60 23 19.81% 

ILCPFD 66176.45 65673.55 19 15.94% 

CPX B&B 57079.09 56557.09 1560 - 

 

 

5 

 

 

6 

 

 

5.0 

ILCPID 94707.50 94199.91 24 20.76% 

ILCPFD 81378.68 80797.58 22 3.76% 

CPX B&B 78429.04 77823.04 2255 - 

(*) Time expressed in seconds 

Average Gap  
 

  ILCPID = 13% 
  ILCPFD = 8% 



Detailed Results for networks N1 & N2 
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Exp. |L| NV NZ Uavg (l) Umax (l) Uavg (v) Umax (v) 

1 4 4 8 34.7% 66.7% 89.8% 100% 

2 5 5 10 50.7% 100% 89.8% 100% 

3 6 6 12 53 % 100% 93% 100% 

4 7 7 14 60.6% 100% 93.43% 100% 

5 8 8 16 66.7% 100% 94.1% 100% 

Exp. |L| NV NZ Uavg (l) Umax (l) Uavg (v) Umax (v) 

1 4 4 8 34.7% 66.7% 89.8% 100% 

2 5 5 10 50.7% 100% 89.8% 100% 

3 6 6 12 53 % 100% 93% 100% 

4 7 7 14 60.6% 100% 93.43% 100% 

5 8 8 16 66.7% 100% 94.1% 100% 

|L|  = Number of lines constructed 

NV = Number of used trains 

NZ = Number of services performed  

 

Measures 
 

  Uavg (l)   = Average line utilization 

  Umax (l)  = Maximum line utilization 

  Uavg (v)  = Average vehicle utilization 

  Umax(v)  = Maximum vehicle utilization  

Network N1 Results 

Network N2 Results 

The model tends to fill vehicles as much as possible  
so that less services are required ! 



N2 is used as initial network for the Network Size vs. Performance Test 

Integrating network design and line planning in rapid transit systems   CASPT12 
22/26 

1 

2 

3 

4 

5 

6 

7 

8 

9 

(28) 
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(42) (25) 

(44) (26) (32) 

(9,0.5,22) 

(26,0.7,6) 

(14,0.6,6) 

(26,1.1,26) 

(24,0.5,6) 

(30,1.1,14) 

(22,0.8,16) 

(21,0.9,20) 

(21,1.3,10) 

(28,0.9,20) 
(20,0.5,10) 

(16,0.7,20) 
(16,0.7,20) 



General Results for the Network Size vs. Performance Test  
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Exp N A Obj. Obj (Pax) T. CPU * 

1 9 72 32040.91 31606.11 11 

2 10 76 28530.55 28107.45 14 

3 11 80 28530.55 28107.45 20 

4 12 84 26413.91 25979.21 17 

5 13 88 24285.54 23848.04 22 

6 14 92 24285.54 23848.04 24 

7 15 96 21259.58 20836.18 32 

8 16 100 21259.58 20836.18 39 

9 17 104 19263.35 18850.15 38 

10 18 108 19263.35 18850.15 31 

11 19 112 19263.35 18850.15 165 

12 20 116 18845.09 18411.49 147 

13 21 120 17727.06 17291.86 384 

14 22 124 17727.06 17291.86 762 

15 23 128 17727.06 17291.86 861 

16 24 132 17429.95 17003.65 28703 

(*) Time expressed in seconds, |L| = 1, |W| = 72 

Computational  
time exploits! 



Conclusions 

• A network design and line planning model has been presented for modelling rapid 
transit systems 

 

• The network design determines the extension of the current set of working lines, 
– By means of a set of candidates stations  

– Without exceeding the available network infrastructure budget 
 

• The line planning assigns vehicles and services while meeting  
– Link and vehicle capacity constraints  

– Vehicle’s fleet maximum size  

– Planning horizon requirements 
 

• Express / point-to point lines can be constructed thanks to 
– The consideration of passengers’ service times at stations 

– The role determination of the line stations as passing points or service points   
 

• The model is formulated by means of mixed integer linear programming and it is 
split heuristically into a series of subproblems with the same mathematical structure 
to solve efficiently small-sized networks 
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Ongoing Research 

• An alternative decomposition approach to speed-up the 
model resolution 
 Benders with convergence enhancements (Papadakos 2008)  

 Ad hoc methods for solving the master problem 
 

• Inclusion of a transportation mode choice model based on 
passengers utility functions 
  Demand mode splitting constraints (Marin & Ródenas 2008) 
 

• Consideration of passengers’ strategies instead of System 
Optimum 

Integrating network design and line planning in rapid transit systems   CASPT12 
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Appendix I 

Detailed formulation of Model’s constraints: 
 

• Passengers flow balance constraints 
• Budget and vehicle fleet Constraints 
• Allocation of services to vehicles constraints 
• Infrastructure-to-passengers flow linking constraints  
• Topological line design constraints 
• Vehicles capacity constraints 
• Link capacity constraints 
• Cycle length constraints 

 



Passengers flow balance constraints 

   

    NN

TP

l

i

lp

ix

lp

ia

iAj

lp

ij

l

i

lp

ix

lp

ia

NN

TP

l

i

lp

ix

lp

iy

iAj

lp

ji

l

i

lp

ix

lp

iy

EE

TP

lp

ix

lp

ia

iAj

lp

ij

EE

TP

lp

ix

lp

iy

iAj

lp

ji

w

i

iAj

p

ji

Ll iAj

p

ij

iAj

lp

ji

Ll iAj

lp

ij

LlOpNiyvvvyvv

LlOpNiyvvvyvv

LlOplNivvv

LlOplNivvv

NiOptuuvv

TP

TP

TP

TP

COMCOMTPTP



















  









  

,,,11

,,,11

,),(,

,),(,

,,

,

)(

,

)(

)(

,,

)(

,

)(

,

)(

,

)(

)(

,,

)(

,

)(

,

)(

,

)(

)(

,

,

)(

,

)(

)(

,

)()()(

,

)(

,




















Wipif

Wippiif
g

g

piif

t
p

piw

i

),(0

),(,

1

Where, 



Budget and vehicle fleet Constraints 
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Allocation of services to vehicles constraints 
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1) Discretization of t(l) variables: 

2) Linearization of the product of binary δ(i,l)  and continuous  z(l) variables 



Infrastructure-to-passengers flow linking constraints  
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Topological line design constraints 
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Vehicles capacity constraints 
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Input parameters 

lq :  Capacity of a vehicle assigned to line l. 



Link capacity constraints 
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Non linear! 

Linearization of the product of binary x(i,j,l)  and continuous  z(l) variables  
by means of Groover 1975 Section 2, resulting in: 



Cycle length constraints 
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Appendix II 

The model’s working 



An illustrative example to show the model’s working  
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•  We want to construct up to 2 lines 
•  Maintenance costs are negligible 
•  We have an unlimited budget and time horizon 
•  But exchange times at station are as follows 

(5,15) (5,15) 
A F E D C B 

1 

1 0 

A rectilinear transit network with 6 stations , 10 stretches  and 2 OD-pairs.  

in  out 

g 

(5,15) (5,15) (5,15) 

100 100 10.000 10.000 

Suppose that, 



The network flow extension allows building point-to-point lines  

(5) (5) 
A F E D C B 

(5) (5) (5) 

100 100 10.000 10.000 

(1) (1) (1) (1) L1 

(5) (5) 
A F E D C B 

(5) (5) (5) 

10.000 10.000 

(1) 
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D C 
(5) 

100 100 

(1) 

Using state of the art models:   Z(pax)  =  (25 + 3) x 10.000  + (5 + 1) x 100 =  280.600  

Using our model:    Z(pax) = (25 + 1) x 10.000  + (5 + 1) x 100 = 260.600       

L1 

L2 



Appendix III 

The procedure of enlarging the N2 Network  



N2 is used as initial network for the Network Size vs. Performance Test 
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The algorithm selects two pair of nodes randomly…. 
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Then, a new node and two new stretches are created to link them 
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Finally, it looks for the minimum costs regarding each stretch and node component 
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which are selected and put on the new node and stretches as the ¼ part of their value  
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New Node features New stretch features 

i 
(2.3,0.13,1.2) 

(6) 

(2.3,0.13,1.2) 


